织梦CMS - 轻松建站从此开始!

罗索实验室

当前位置: 主页 > 音视频技术 > 视频处理 >

AdaBoost人脸检测训练算法 (中)

落鹤生 发布于 2014-02-09 16:59 点击:次 
( 3 )采用 AdaBoost 算法 选取优化的弱 分类 器 通过 Adaboost 算法挑选数千个有效的 haar 特征 来组成 人脸 检测 器, Adaboost 算法中不同的 训练 集是通过调整每个样本对应的权重来实现的。 开始时,每个样本对应的权重是相同的,对于 h1 分类错误的样本,加大其
TAG: AdaBoost  人脸检测  

3)采用AdaBoost算法选取优化的弱分类
 
通过Adaboost算法挑选数千个有效的haar特征来组成人脸检测器,Adaboost算法中不同的训练集是通过调整每个样本对应的权重来实现的。
开始时,每个样本对应的权重是相同的,对于h1分类错误的样本,加大其对应的权重;而对于分类正确的样本,降低其权重,这样分错的样本就被突出出来,从而得到一个新的样本分布U2
在新的样本分布下,再次对弱分类器进行训练,得到弱分类器h2。依次类推,经过T次循环,得到T个弱分类器,把这T个弱分类器按一定的权重叠加(boost)起来,得到最终想要的强分类器。
 
这里,我给出训练弱分类器和选取优化的弱分类器的算法(算法图若看不清,请点击放大):
 
 
分类器训练完以后,就可以应用于输入图像中的感兴趣区域(与训练样本相同的尺寸)的检测。检测到目标区域(汽车或人脸)分类器输出为1,否则输出为0
为了检测整副图像,可以在图像中移动搜索窗口,检测每一个位置来确定可能的目标。为了搜索不同大小的目标物体,分类器被设计为可以进行尺寸改变,这样比改变待检图像的尺寸大小更为有效。
所以,为了在图像中检测未知大小的目标物体,扫描程序通常需要用不同比例大小的搜索窗口对图片进行几次扫描。
 
4)构成级联结构的层叠分类器
 
每个特定分类器所使用的特征用形状、感兴趣区域中的位置以及比例系数(这里的比例系数跟检测时候采用的比例系数是不一样的,尽管最后会取两个系数的乘积值)来定义
分类器中的“级联”是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器,这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。
 
 
同样,我们给定训练级联结构的分类器的算法(算法图若看不清,请点击放大):
 
补充:训练样本的选择和训练系统总体框架
 
训练样本要求是面部特写图像,下图是一簇训练样本,大小被归一化为24×24像素。
其中,正训练样本要求是面部特写图像,但是人脸形态千差万别,所以训练样本选取过程中要考虑到样本的多样性。
负训练样本,大小被归一化为24×24像素,其中各样本不完全相同,分别具有一定的代表性。
 
训练系统总体框架,由“训练部分”和“补充部分”构成。依据系统框架,本文的训练系统可分为以下几个模块:
(1)以样本集为输入,在给定的矩形特征原型下,计算并获得矩形特征集;
       (2)以特征集为输入,根据给定的弱学习算法,确定闽值,将特征与弱分类器一一对应,获得弱分类器集;
        (3)以弱分类器集为输入,在训练检出率和误判率限制下,使用A d a B o o s t算法
挑选最优的弱分类器构成强分类器;
       (4)以强分类器集为输入,将其组合为级联分类器;
        (5)以非人脸图片集为输入,组合强分类器为临时的级联分类器,筛选并补充非人脸样本。
(hqw7286)
本站文章除注明转载外,均为本站原创或编译欢迎任何形式的转载,但请务必注明出处,尊重他人劳动,同学习共成长。转载请注明:文章转载自:罗索实验室 [http://www1.rosoo.net/a/201402/16898.html]
本文出处:CSDN博客 作者:hqw7286
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
栏目列表
将本文分享到微信
织梦二维码生成器
推荐内容